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INTRODUCTION 
 

The role of data mining in health care has become the subject matter of wide and varied research 

activities [Kaur H. et.al. 2006]. Extraction of useful information from health care data offers a lot of 

challenges in terms of storage, dissemination, privacy and security of patient data. While the privacy issue 

is more of a legal and ethical issue rather than technological issue, data mining offers broader community- 

based gains that enable and improve healthcare forecasting, analysis, and visualisation [Payton F.C., 

2003]. Guided use of technologies like database systems, data mining and knowledge management can 

contribute a lot to decision support systems in health care. 

The health care environment is generally perceived as being “rich in information” yet poor in 

knowledge [Lincoln T. et.al., 1999]. Presently, there is a lack of good data analysis tools to uncover 

hidden relationships in the data. If the data regarding past clinical trials and interviews with the patients is 

gathered and computerised in a knowledge base, it can be evaluated for effective and safe treatments on 

human subjects. 

TANAGRA – a shareware data mining tool – has been used to implement the ID3 decision tree 

algorithm to a dataset of diabetes patients. The decision tree algorithm was run under the interactive 

guidance of a human expert with medical knowledge to select the attributes for the information extraction. 

An interactive system is an integration of a human user and a machine in which both can communicate 

and exchange information for achieving a common goal. Interactive data mining can support user‟s 

learning, improve his insight and understanding of the domain, and on the other hand user‟s feedback can 

be used to improve the performance of the machine in terms of efficiency of operations and quality of the 

output. 



International Journal of Research in Science And Technology http://www.ijrst.com/ 

(IJRST) 2011, Vol. No. 1, Issue No. I, Apr-Jun ISSN: 2249-0604 

 

48 

International Journal of Research in Science And Technology  

 

 

 

Interactive Application 

of Various Data Mining 

Tools/Techniques 

 
 
 

Discovered 

 
 
 
 

Medical 

Database 

 

Medical 

Experts 

 

Data Mining 

Agents 

 
 
 

New Storage 

Module 

 

 

Figure 1.1: Interactive decision support system in medical domain. 
 

Figure 1.1 depicts the flow of information and control in the proposed system. The knowledge 

discovered from medical databases by the synergy of human and computer interaction is in the form of 

rules and implications. This knowledge can be stored back in the medical database to further assist the 

clinicians in diagnosing future cases. Such a system would turn out to be an interactive decision support 

system in health care management. The system differs from a conventional DSS such as MATCH 

[Gruzdz A. et.al. 2006] in that it involves domain user in the knowledge discovery process. Medical 

practitioners can better define the parameters for extraction of useful rules and patterns. 

The IDSS proposed and developed as a part of research work reported herein was run on dataset 

containing details of clinical trial of diabetic patients. The IDSS was supposed to find the major factors 

responsible for developing the disease. Three experiments were conducted to get some useful knowledge 

for the clinicians to improve the quality of decisions in the medical diagnosis. 

The dataset donated by Vincent Sigillito of John Hopkins University was used in the 

experimental runs of IDSS. The dataset is available on UCI Machine Learning Repository website 

http://archive.ics.uci.edu:80/ml/datasets.html. The dataset consists of clinical trials of Indian female 

patients suffering from Diabetes Mellitus. The dataset comprises of 8 attributes (Table 1) and 768 records. 

There is an additional attribute named „Class’ which has two values „YES‟ and „NO‟. 
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S.No. Attribute Name/Description (all numeric-valued) 

1 Number of times pregnant 

2 Plasma glucose concentration a 2 hours in an oral glucose 
tolerance test 

3 Diastolic blood pressure (mm Hg) 

4 Triceps skin fold thickness (mm) 

5 2-Hour serum insulin (mu U/ml) 

6 Body mass index (weight in kg/(height in m)^2) 

7 Diabetes pedigree function 

8 Age (years) 

9 Class variable (0 or 1) 

Table 1: Attributes of Diabetes dataset. 

(Source: Diabetes Dataset - http://archive.ics.uci.edu:80/ml/datasets.html) 

Material and method 
 

TANAGRA - a free, open-source, user-friendly software product developed by Ricco 

Rakotomalala, has been used to mine the data. TANAGRA supports a host of analytical functions such as 

binary logistic regression, k-nearest neighbor, neural network trained with back-propagation, Quinlan‟s 

ID3 (Iterative Dichotomiser 3), linear discriminant analysis, and naive Bayesian classifier. In 

classification based machine learning approach there are two distinct approaches to learning: supervised 

and un-supervised learning. The supervised learning deals with problems where a set of data are labeled 

for training and another set would be used for testing [Li C.H. et.al., 2001]. 

Table 2 provides a brief description of the various components of TANAGRA used in the 

experiments. ID3 algorithm of Meta-supervised learning has been run after loading the dataset in Tanagra. 

TANGARA arranges the Classification results in form of a decision tree which is a predictive model that 

maps observations about an item to conclusions about the item's target value. In the resulting decision 

trees, leaves represent the class of the data item and branches represent conjunction of features that has 

lead to those classifications. After applying the decision tree classification, rules can be designed based 

upon the results of the algorithm with the help of another component named Rule-based selections and the 

same can be visualised. The results have been analysed by a domain expert to pick appropriate rules that 

might be in interest of medical purpose. 

Table 2: Components of TANAGRA used in the experiments. 

 

Tab Operator (Component) Comment 

Feature selection Define status Specify the attributes to use 

Meta-spv learning Supervised learning A container for machine learning 

http://en.wikipedia.org/wiki/Predictive_modelling
http://en.wikipedia.org/wiki/Leaf_node
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  operators 

Spv learning ID3 A machine learning operator 

Instance selection Rule-based selection Select a subset of examples based 

upon a rule. 

Data visualisation View dataset Visualise the current dataset in a 

grid. 

To conduct the experiment the Diabetes dataset was bifurcated into two equal parts containing 

384 records each. The first part was used as training set while the second part was used as test set. ID3 

was run on the training set and the Rule-based selection algorithm was applied to the test set. The goal 

was to involve the domain expert in the analysis process. The experiment was repeated thrice with 

different input combinations. The judgment of attributes for different runs of the algorithm has been done 

both subjectively and interactively. 
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